WEEKLY TEST MEDICAL PLUS -02 TEST - 08 Balliwala SOLUTION Date 25-08-2019

[PHYSICS]

1. The co-ordinates of 3 vertices are given by:

$$
A:(1,3), \quad B:(2,-4), \quad C:\left(x_{3}, y_{3}\right)
$$

We know that for a triangular plate the centre of mass lies at the centroid of the triangle.

$$
\begin{aligned}
\therefore\left(X_{\mathrm{CM}}, Y_{\mathrm{CM}}\right) & =\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right) \\
& =\left(\frac{1+2+x_{3}}{3}, \frac{3-4+y_{3}}{3}\right)
\end{aligned}
$$

But it is given that;

$$
\text { Hence, } \quad\left(x_{3}, y_{3}\right)=(-3,1)
$$

2. The co-ordinates of the corners of the square are $(0,0),(2,0)$, $(2,2),(0,2)$. Hence,

$$
\begin{aligned}
X_{\mathrm{CM}} & =\frac{m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}+m_{4} x_{4}}{m_{1}+m_{2}+m_{3}+m_{4}} \\
& =\frac{2 \times 0+3 \times 2+5 \times 2+8 \times 0}{2+3+5+8}=\frac{16}{18}=\frac{8}{9} \mathrm{~m} \\
Y_{\mathrm{CM}} & =\frac{m_{1} y_{1}+m_{2} y_{2}+m_{3} y_{3}+m_{4} y_{4}}{m_{1}+m_{2}+m_{3}+m_{4}} \\
& =\frac{2 \times 0+3 \times 0+5 \times 2+8 \times 2}{2+3+5+8}=\frac{26}{18}=\frac{13}{9} \mathrm{~m}
\end{aligned}
$$

\therefore Co-ordinates of the centre of mass $=\left(\frac{8}{9}, \frac{13}{9}\right)$.

$$
\begin{aligned}
& \left(X_{\mathrm{CM}}, Y_{\mathrm{CM}}\right)=(0,0) \\
& \therefore \quad \frac{3+x_{3}}{3}=0 \quad \text { or } \quad x_{3}=-3 \\
& \text { and } \quad \frac{-1+y_{3}}{3}=0 \quad \text { or } \quad y_{3}=1
\end{aligned}
$$

3. Mass of the disc removed $=\frac{M}{\pi R^{2}} \times \pi\left(\frac{R}{2}\right)^{2}=\frac{M}{4}$

Remaining mass $=M-\frac{M}{4}=\frac{3 M}{4}$
Let the origin of the co-ordinate system coincide with the centre of mass of whole disc. Now, we know that;

$$
X_{\mathrm{CM}}=\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}}
$$

X_{CM} will be zero, when

$$
\begin{aligned}
& \therefore \quad m_{2} x_{2} & =-m_{1} x_{1} \\
& x_{2} & =-\frac{m_{1}}{m_{2}} x_{1}
\end{aligned}
$$

Here, $\quad m_{1}=\frac{M}{4}, \quad x_{1}=\frac{R}{2}$
and $\quad m_{2}=\frac{3 M}{4} \quad$ (for remaining mass)
Hence, $\quad x_{2}=-\frac{M / 4}{3 M / 4} \cdot \frac{R}{2}=\frac{-R}{6}$
i.e., $\frac{R}{6}$ from the centre (on LHS).
4. Mass of the disc removed $=\frac{M}{\pi(28)^{2}} \times \pi(21)^{2}=\frac{9 M}{16}$

$$
\text { Remaining mass }=\frac{7 M}{16}
$$

Using the same method as followed in the above question,

$$
\frac{7 \mathrm{M}}{16} \times O O_{2}=\frac{9 \mathrm{M}}{16} \times O O_{1}
$$

As, $\quad O O_{1}=(28-21) \mathrm{cm}=7 \mathrm{~cm}$
Hence, $\quad O O_{2}=\frac{9}{7} \times 7 \mathrm{~cm}=9 \mathrm{~cm}$.

Let the circular disc of radius a be made up of the circular section of radius b and remainder. Further let the line of symmetry joining the centres O and O_{1} be the x-axis with O as origin. The centre of mass of the disc of radius a will be given by:

$$
\begin{equation*}
X_{\mathrm{CM}}=\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}} \tag{i}
\end{equation*}
$$

while Y_{CM} and Z_{CM} will be zero (as for all points on x-axis, y and $z=0$)

If σ be the density of the material of disc,

$$
\begin{aligned}
& \text { - } m_{1}=\pi b^{2} \sigma \text { and } x_{1}=c \\
& m_{2}=\pi\left(a^{2}-b^{2}\right) \sigma \quad \text { and } \quad x_{2}=\text { ? } \\
& M=\left(m_{1}+m_{2}\right)=\pi a^{2} \sigma \quad \text { and } \quad X_{\mathrm{CM}}=0
\end{aligned}
$$

From eqn. (i),

$$
\begin{aligned}
\quad 0 & =\frac{\pi b^{2} \sigma(c)+\pi\left(a^{2}-b^{2}\right) \sigma x_{2}}{\pi a^{2} \sigma} \\
\therefore \quad x_{2} & =\frac{-c b^{2}}{\left(a^{2}-b^{2}\right)}
\end{aligned}
$$

i.e., the centre of mass of the remainder ($\operatorname{say} O_{2}$) is at a distance $c b^{2} /\left(a^{2}-b^{2}\right)$ to the left of O on the line joining the centres O and O_{1}.
6. Let ρ be the density of lead.

Then, $M=\frac{4}{3} \pi R^{3} \rho=$ mass of tọtal sphere

$$
\begin{aligned}
& m_{1}=\frac{4}{3} \pi\left(\frac{R}{2}\right)^{3} \rho=\text { mass of removed part }=\frac{M}{8} \\
& m_{2}=M-\frac{M}{8}=\frac{7 M}{8}=\text { mass of remaining sphere }
\end{aligned}
$$

Choosing the centre of big sphere as the origin,

$$
\begin{aligned}
X_{\mathrm{CM}} & =\frac{m_{1} x_{1}+m_{2} x_{2} .}{m_{1}+m_{2}} \\
0 & =\frac{\frac{M}{8} \times \frac{R}{2}+\frac{7 M}{8} \times x_{2}}{M}
\end{aligned}
$$

Solving, we get; $x_{2}=\frac{-R}{14}$
i.e., centre of mass of hollowed sphere would be at a distance of $R / 14$ on left of O,
i.e., shift in centre of mass $=\frac{R}{14}$.
7.
same system,

$$
\begin{aligned}
m_{1} & =l \times b \times \sigma=8 \times 2 \times \sigma=16 \sigma \\
m_{2} & =l \times b \times \sigma=6 \times 2 \times \sigma=12 \sigma
\end{aligned}
$$

Choosing O as the origin,

$$
x_{1}=1 \mathrm{~m}, \quad x_{2}=2+3=5 \mathrm{~m}
$$

$$
\therefore \quad X_{\mathrm{CM}}=\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}}
$$

$$
=\frac{16 \sigma \times 1+12 \sigma \times 5}{16 \sigma+12 \sigma}=\frac{19}{7}
$$

$$
=2.7 \mathrm{~m} \text { from } O \text {. }
$$

8. Here, $m_{1}=4 \mathrm{~kg} ; \quad x_{1}=2 \mathrm{~m}$

$\therefore m_{2}(=8 \mathrm{~kg})$ must be placed at 1 m from O on $O E$.
9. If the density of cone be ρ, then its mass will be,

$$
m_{1}=\frac{1}{3} \pi(2 R)^{2}(4 R) \rho=\frac{16}{3} \pi R^{3} \rho
$$

and its centre of mass will be at a height

$$
\frac{h}{4}=\frac{4 R}{4}=R
$$

from O on the line of symmetry,
i.e., $\quad y_{1}=R$

Similarly, the mass of the sphere,

$$
m_{2}=\frac{4}{3} \pi R^{3}(12 \rho)=16 \pi R^{3} \rho=3 m_{1}
$$

and its centre of mass will be at its centre O_{2},i.e., $y_{2}=4 R+R=5 R($ from $O)$.
Now, treating the sphere and cone as point masses with their masses concentrated at their centres of mass respectively and taking the line of symmetry as y-axis with origin at O, the centre of mass of the toy is given by:

$$
Y_{\mathrm{CM}}=\frac{m_{1} y_{1}+m_{2} y_{2}}{m_{1}+m_{2}}=\frac{m_{1} \times R+3 m_{1} \times 5 R}{m_{1}+3 m_{1}}=4 R
$$

i.e., centre of mass of the toy is at a distance of $4 R$ from O on the line of symmetry, i.e., at the apex of the cone.
10. According to the equation of motion of the centre of mass,

	$M{\overrightarrow{a_{\mathrm{CM}}}}=\vec{F}_{\text {ext. }}$
If	$\vec{F}_{\text {ext. }}=0, \overrightarrow{a_{\mathrm{CM}}}=0$
i.e., $\quad \vec{v}_{\mathrm{cM}}=$ constant	

i.e., if no external force acts on a system (or resultant external force acting on a system is zero) the velocity of its centre of mass remains constant (i.e., velocity of the centre of hitass is unaffected by internal forces). Hence, the kinetic energy and momentum of the system also remain constant.
So, if the centre of mass of a system is at rest (or in the state of uniform motion) it will remain at rest (or in the state of uniform motion) unless acted upon by an external force. Thus, if $\vec{F}_{\text {ext. }}=0$, it is possible that the position of the centre of mass may change at a constant rate.
11. As discussed in the above question 25 , if $\vec{F}_{\text {ext. }}=0$, the velocity of the centre of mass of the system remains constant and is not affected by internal forces whatever may be their direction of action.
12. The two bodies will move towards their common centre of mass but the location of the centre of mass will remain unchanged, i.e., CM remains at rest w.r.t. A as well as B.
13. Initially, the particles are at rest, so the velocity of the centre of mass,

$$
\begin{aligned}
& \vec{v}_{\mathrm{CM}}=\frac{m_{1} \times 0+m_{2} \times 0}{m_{1}+m_{2}}=0 \\
& \text { As here } \\
& \vec{F}_{\text {ext. }}=0 \text {, so } \\
& \vec{v}_{\mathrm{CM}}=\text { constant } \\
& \text { i.e. } \quad \frac{m_{1} \overrightarrow{v_{1}}+m_{2} \overrightarrow{v_{2}}}{m_{1}+m_{2}}=0 \\
& \text { or } \quad m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}=0 \\
& \text { or } \quad m_{1} \frac{\Delta \overrightarrow{r_{1}}}{\Delta t}+m_{2} \frac{\Delta \overrightarrow{r_{2}}}{\Delta t}=0 \\
& \text { or } \left.\quad m_{1} \Delta \overrightarrow{r_{1}}+m_{2} \Delta \vec{r}_{2}=0 \quad \text { (as } \Delta t \neq \infty\right) \\
& \text { or } \quad m_{1} \vec{d}_{1}+m_{2} \vec{d}_{2}=0 \quad \text { (with } \Delta \vec{r}=\vec{d} \text {) } \\
& \text { or } \quad m_{1} d_{1}-m_{2} d_{2}=0
\end{aligned}
$$

(as direction of $\overrightarrow{d_{2}}$ is opposite to $\overrightarrow{d_{1}}$)
or $\quad m_{1} d_{1}=m_{2} d_{2}$
But given that $d_{1}+d_{2}=d$, so that

$$
d_{1}=\frac{m_{2} d}{m_{1}+m_{2}} \text { and } d_{2}=\frac{m_{1} d}{m_{1}+m_{2}}
$$

Now, as d_{1} and d_{2} represent the position of the centre of the mass relative to m_{1} and m_{2} respectively, the particles will collide at the centre of mass of the system.
14. As seen in question 28 , two particles will meet at their centre of mass
\therefore Distance of the centre of mass from 8 kg mass

$$
=\frac{8 \times 0+4 \times 12}{8+4}=4 \mathrm{~m} .
$$

15.
16. The centre of mass reference frame is one in which the centre of mass is at rest. So, the velocity of the heavier block in this frame just after the kick is,

$$
v_{1}^{\prime}=v_{1}-V_{\mathrm{CM}}=14-10=4 \mathrm{~m} / \mathrm{s}
$$

and that of lighter block is,

$$
v_{2}^{\prime}=v_{2}-V_{\mathrm{CM}}=0-10=-10 \mathrm{~m} / \mathrm{s}
$$

17. Given that the system is initially at rest,
i.e.,

$$
\begin{array}{lrl}
\text { i.e., } & \vec{V}_{\mathrm{CM}} & =0 \\
\therefore & \frac{m_{1} \overrightarrow{v_{1}}+m_{2} \vec{v}_{2}}{m_{1}+m_{2}} & =0
\end{array}
$$

or $\quad m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}=0$
or $\quad m_{1} \frac{\Delta \overrightarrow{r_{1}}}{\Delta t}+m_{2} \frac{\Delta \overrightarrow{r_{2}}}{\Delta t}=0$
or $\quad m_{1} \Delta \overrightarrow{r_{1}}+m_{2} \Delta \overrightarrow{r_{2}}=0$
Now, here in boat-man system if the man moves towards right the boat moves towards left.
$\therefore \quad m_{1} \Delta r_{1}=m_{2} \Delta r_{2}$
($\because \Delta r_{1}$ is opposite to Δr_{2})
If Δr_{2} is the displacement of boat relative to shore, then the displacement of man relative to shore would be $\left(9-\Delta r_{2}\right)$,
i.e.,

$$
\begin{equation*}
\Delta r_{1}=9-\Delta r_{2} \tag{ii}
\end{equation*}
$$

From eqn. (i) and (ii),

$$
m_{1}\left(9-\Delta r_{2}\right)=m_{2} \Delta r_{2}
$$

or $\quad 100\left(9-\Delta r_{2}\right)=500 \Delta r_{2}$
$\therefore \quad \Delta r_{2}=\frac{100 \times 9}{600}=1.5 \mathrm{~m}$
i.e., Boat moves 1.5 m relative to shore in the direction opposite to the displacement of the man.
18. Given that initially the system is at rest, so

$$
\vec{V}_{\mathrm{CM}}=0
$$

Now, as in the motion of dog no external force is applied to the system, hence

$$
\vec{V}_{\mathrm{CM}}=\text { constant }=0
$$

$$
\begin{array}{rlrl}
\text { i.e., } & \frac{m \vec{v}_{1}+M \vec{v}_{2}}{m+M} & =0 & \\
\text { or } & m \vec{v}_{1}+M \vec{v}_{2} & =0 & \\
\text { or } & m \frac{\Delta \overrightarrow{r_{1}}}{\Delta t}+M \frac{\Delta \overrightarrow{r_{2}}}{\Delta t} & =0 & \\
& \text { [as }(m+M)=\text { finite }] \\
\text { or } & m \Delta \vec{r}_{1}+M \Delta \vec{r}_{2} & =0 & \text { (as } \Delta \vec{r}=\vec{d}=\text { displacement }) \\
\text { or } & m d_{1}-M d_{2} & =0 & \text { (as } \left.\overrightarrow{d_{2}} \text { is opposite to } \overrightarrow{d_{1}}\right) \tag{i}\\
\text { or } & m d_{1} & =M d_{2} &
\end{array}
$$

Now, when dog moves 4 m towards shore relative to boat, the boat will shift a distance d_{2} relative to shore opposite to the displacement of dog; so, the displacement of dog relative to shore (towards shore) will be,

$$
\begin{equation*}
d_{1}=4-d_{2} \tag{ii}
\end{equation*}
$$

(i.e., $d_{1}+d_{2}=d_{\text {rel. }}=4$).

Putting the value of d_{2} from eqn. (ii) in eqn. (i),

$$
\begin{aligned}
m d_{1} & =M\left(4-d_{1}\right) \\
\text { or } \quad d_{1} & =\frac{M \times 4}{m+M}=\frac{20 \times 4}{5+20}=3.2 \mathrm{~m}
\end{aligned}
$$

As initially the dog was 10 m from the shore, so now he will be $(10-3.2)=6.8 \mathrm{~m}$ from the shore .
19. Given that initially the system is at rest,

		\vec{V}_{CM}	$=0$
i.e.,	\vec{V}_{CM}	$=$ constant $=0$	
so			
i.e.		$\frac{m \vec{v}+M \vec{V}}{m+M}$	$=0$
or	$m \vec{v}+M \vec{V}$	$=0$	[as $(m+M)=$ finite]
i.e.		$M \vec{V}$	$=-m \vec{v}$

Furthermore, here it is given that;

$$
\begin{equation*}
\vec{v}_{\text {rel. }}=\vec{v}-\vec{V} \tag{ii}
\end{equation*}
$$

Putting the value of \vec{v} from eqn. (ii) in eqn. (i), we get;
or

$$
\begin{align*}
M \vec{V} & =-m\left(\vec{v}_{\text {rel. }}+\vec{V}\right) \\
\vec{V} & =-\frac{m \vec{v}_{\text {rel. }}}{(m+M)} \tag{iii}
\end{align*}
$$

Thus, it is clear that the direction of motion of balloon is opposite to that of climbing ($\vec{v}_{\text {rel. }}$), i.e., vertically down.
20. From eqn. (i) of question. 19 we find that

$m \vec{v}+M \vec{V}$	$=0$	
	$m \frac{\Delta \overrightarrow{r_{1}}}{\Delta t}+M \frac{\Delta \overrightarrow{r_{2}}}{\Delta t}$	$=0$
or	$m \overrightarrow{\Delta_{1}}+M \overrightarrow{\Delta \overrightarrow{r_{2}}}$	$=0$
or	$m \overrightarrow{d_{1}}+M \overrightarrow{d_{2}}$	$=0$
or	$m d_{1}-M d_{2}$	$=0$
or	$m d_{1}$	$=M d_{2}$

Now, as the man climbs up L towards the balloon (relative to balloon), the balloon will descend a distance d_{2} downwards relative to the ground, so that upward displacement of man relative to ground will be,

$$
\begin{equation*}
d_{1}=L-d_{2} \quad\left(\text { i.e. }, d_{1}+d_{2}=L\right) \tag{v}
\end{equation*}
$$

Putting the value of d_{1} from eqn. (v) in eqn. (iv), we get;

$$
\text { i.e., } \begin{align*}
m\left(L-d_{2}\right) & =M d_{2} \\
d_{2} & =\frac{m L}{m+M} \tag{vi}
\end{align*}
$$

i.e., balloon will descend by $\frac{m L}{m+M}$ relative to ground when the man climbs up a distance L (relative to balloon)
21. When man stops climbing,

$$
\vec{v}_{\text {rel. }}=0
$$

so that from eqn. (iii) of question $34, \vec{V}=0$, i.e., balloon will also stop descending and will become stationaryrelative to the ground.
22. Refer to question 13 Two particles collide at their centre of mass.
\therefore Distance of CM from P

$$
=\frac{0.1 \times 0+0.3 \times 1}{0.1+0.3}=0.75 \mathrm{~m} .
$$

23. Consider P : $s_{1}=\frac{1}{2} a_{1} t^{2}$

$$
\begin{array}{lll}
\text { or } & 0.75=\frac{1}{2} \frac{F}{m_{1}} t^{2}=\frac{1}{2} \times \frac{10^{-2}}{0.1} \times t^{2} \\
\therefore & & t=\sqrt{15} \mathrm{sec}
\end{array}
$$

24. Under mutual attraction, the centre of mass remains at rest i.e., velocity is zero.
25. The equation of motion of the centre of mass is,

$$
M \overrightarrow{a_{\mathrm{CM}}}=\vec{F}_{\mathrm{ext}}
$$

And as there is no external force in horizontal direction, so the centre of mass of the system does not change along horizontal direction.
For vertical motion of the centre of mass,

$$
\begin{equation*}
\left(a_{\mathrm{CM}}\right)_{y}=\frac{F_{\mathrm{ext}}}{M}=\frac{\left(m_{1}+m_{2}\right) g-2 T}{\left(m_{1}+m_{2}\right)} \tag{i}
\end{equation*}
$$

Further, $a_{\mathrm{CM}}=\frac{m_{1} a_{1}+m_{2} a_{2}}{m_{1}+m_{2}}$
$\left(m_{1}+m_{2}\right) g$

$$
\begin{array}{lr}
=\frac{m_{1}-m_{2}}{m_{1}+m_{2}} a & {\left[\because \overrightarrow{a_{1}}=a \text { and } \overrightarrow{a_{2}}=-a\right]} \\
=\left(\frac{m_{1}-m_{2}}{m_{1}+m_{2}}\right)^{2} g & {\left[\because a=\frac{m_{1}-m_{2}}{m_{1}+m_{2}} g\right]}
\end{array}
$$

However, the equations of motion of two blocks are

$$
\begin{aligned}
& m_{2} g-T=m_{2} a \\
& T-m_{1} g=m_{1} a
\end{aligned}
$$

Eliminating a, we get;

$$
\begin{equation*}
T=\frac{2 m_{1} m_{2}}{m_{1}+m_{2}} g \tag{ii}
\end{equation*}
$$

Putting eqn. (ii) in eqn. (i), we get;

$$
\left(a_{\mathrm{CM}}\right)_{y}=\frac{\left(m_{1}+m_{2}\right)^{2}-4 m_{1} m_{2}}{\left(m_{1}+m_{2}\right)^{2}} g=\left(\frac{m_{1}-m_{2}}{m_{1}+m_{2}}\right)^{2} g
$$

[Note: It is clear that acceleration of CM is always vertically downward irrespective of whether m_{1} is heavier or m_{2}.]
26. . Force F_{A} on the particle A is given by:

$$
\begin{equation*}
F_{A}=m_{A} a_{A}=\frac{m_{A} v}{t} \tag{i}
\end{equation*}
$$

Similarly, $\quad F_{B}=m_{B} a_{B}=\frac{m_{B} \times 2 v}{t}$
Now, $\frac{m_{A} v}{t}=\frac{m_{B} \times 2 v}{t} \quad\left(\because F_{A}=F_{B}\right)$
So, $\quad m_{A}=2 m_{B}$
Hence, the speed of the centre of mass of the system

$$
V_{\mathrm{CM}}=\frac{m_{A} v_{A}+m_{B} v_{B}}{m_{A}+m_{B}}=\frac{2 m_{B} v-m_{B} \times 2 v}{2 m_{B}+m_{B}}=0 .
$$

AVIRAL CLASSES

CREATING SCHOLARS
27. Here, the centre of mass of the system remains unchanged when the mass m moved a distance $L \cos \theta$, let the mass ($m+M$) moves a distance x in the backward direction.

$$
\begin{array}{ll}
\therefore & (M+m) x-m L \cos \theta=0 \\
\therefore & x=(m L \cos \theta) /(m+M) .
\end{array}
$$

28. Horizontal distance travelled by the centre of mass before hitting the ground is $R=\frac{u^{2} \sin 2 \theta}{g}$ (since the path of the centre of mass does not change due to the forces of explosion).
29. . Since, P is the freely falling body, it hits the ground vertically downwards, i.e., at a distance of $R / 2$ from the starting point. Since, the centre of mass hits the ground at a distance R from the starting point, then

$$
\begin{array}{rlrl}
& & X_{\mathrm{CM}} & =\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}} \\
& \therefore & & R=\frac{\frac{m}{2} \times \frac{R}{2}+\frac{m}{2} \times x_{2}}{m} \\
\therefore & & x_{2}=2 R-\frac{R}{2}=\frac{3 R}{2} .
\end{array}
$$

30. Motion of the centre of mass is exactly similar to that of translatory motion of a body that is thrown into air.

$$
\begin{aligned}
u_{x} & =u \cos \theta, & u_{y} & =u \sin \theta \\
& =\frac{10}{\sqrt{2}} \mathrm{~m} / \mathrm{s} & & =\frac{10}{\sqrt{2}} \mathrm{~m} / \mathrm{s} \\
v_{x} & =\frac{10}{\sqrt{2}} \mathrm{~m} / \mathrm{s} & &
\end{aligned}
$$

(since there is no change in the horizontal velocity)

$$
\begin{aligned}
v_{y}^{2}-u_{y}^{2} & =2(-g)(h) \\
v_{y}^{2} & =u_{y}^{2}-2 g h=\frac{100}{2}-2 \times 10 \times 1=30
\end{aligned}
$$

\therefore Net velocity of $\mathrm{CM}=\sqrt{v_{x}^{2}+v_{y}^{2}}$

$$
=\sqrt{\frac{100}{2}+30}=\sqrt{80}=4 \sqrt{5} \mathrm{~m} / \mathrm{s} .
$$

31.

$$
\begin{aligned}
F_{\text {ext. }} & =\sqrt{F_{x}^{2}+F_{y}^{2}}=\sqrt{16^{2}+8^{2}}=8 \sqrt{5} \mathrm{~N} \\
M & =m_{1}+m_{2}=8+8=16 \mathrm{~kg} \\
\therefore \vec{F}_{\text {ext. }} & =M \vec{a}_{\mathrm{CM}}
\end{aligned}
$$

$\left|\vec{a}_{\mathrm{CM}}\right|=\frac{\left|\vec{F}_{\mathrm{ext} .}\right|}{M}=\frac{8 \sqrt{5}}{16}=\frac{\sqrt{5}}{2} \mathrm{~m} / \mathrm{sec}^{2}$
\vec{a}_{CM} lies in the direction of $\vec{F}_{\text {ext. }}$. Angle made by $\vec{F}_{\text {ext. }}$. with x-axis
$=\tan ^{-1} \frac{F_{y}}{F_{x}}=\tan ^{-1} \frac{16}{8}=\tan ^{-1}$ (2).
32.

$$
\overrightarrow{F_{\text {ext. }}}=M \overrightarrow{a_{\mathrm{CM}}}
$$

i.e., \vec{a}_{CM} lies in the direction of $\vec{F}_{\text {ext. }}$

Here, $\quad \vec{F}_{\text {ext. }}=5(2 \hat{i}+3 \hat{j}+5 \hat{k})$

$$
\overrightarrow{a_{\mathrm{CM}}}=2 \hat{i}+3 \hat{j}-5 \hat{k}
$$

Since, $\vec{F}_{\text {ext. }}$ and \vec{a}_{CM} are not lying in the same direction, given data is incorrect.
33.

$$
\begin{aligned}
R_{\mathrm{CM}} & =\frac{12 \times 0+16 \times 1.12 \times 10^{-10}}{12+16} \\
& =\frac{16}{28} \times 1.12 \times 10^{-10} \mathrm{~m}=0.64 \times 10^{-10} \mathrm{~m} .
\end{aligned}
$$

34. $m_{1}=10 \mathrm{~kg}, \quad m_{2}=2 \mathrm{~kg}$

$$
\begin{aligned}
\overrightarrow{v_{1}} & =2 \hat{i}-7 \hat{j}+3 \hat{k} \\
\overrightarrow{v_{2}} & =-10 \hat{i}+35 \hat{j}-3 \hat{k} \\
\overrightarrow{v_{\mathrm{CM}}} & =\frac{m_{1} \overrightarrow{v_{1}}+m_{2} \overrightarrow{v_{2}}}{m_{1}+m_{2}} \\
& =\frac{10(2 \hat{i}-7 \hat{j}+3 \hat{k})+2(-10 \hat{i}+35 \hat{j}-3 \hat{k})}{10+2}=2 \hat{k} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

35.

$$
\begin{aligned}
X_{\mathrm{CM}} & =\frac{m_{1} x_{1}+m_{2} x_{2}+\ldots}{m_{1}+m_{2}+\ldots} \\
& =\frac{m l+2 m \cdot 2 l+3 m \cdot 3 l+\ldots}{m+2 m+3 m+\ldots} \\
& =\frac{m l(1+4+9+\ldots)}{m(1+2+3+\ldots)} \\
& =\frac{l \frac{n(n+1)(2 n+1)}{6}}{\frac{n(n+1)}{3}}=\frac{l(2 n+1)}{3}
\end{aligned}
$$

36. $\quad a_{\mathrm{CM}}=\frac{m_{1} a_{1}+m_{2} a_{2}}{m_{1}+m_{2}}$

$$
\begin{aligned}
m_{1} & =m_{2}=m \\
a_{1} & =0 ; \quad a_{2}=a \\
\therefore \quad a_{\mathrm{CM}} & =\frac{m a}{2 m}=\frac{a}{2} .
\end{aligned}
$$

37.
38. We know that as all the metal balls are identical in mass and radius, therefore the centre of mass of the system will be at the point of intersection of their medians.
39.

$$
a=\frac{3 m-m}{3 m+m} g=\frac{g}{2}
$$

Acceleration of centre of mass

$$
=\frac{3 m \times \frac{g}{2}-\frac{m g}{2}}{3 m+m}=\frac{g}{4} .
$$

40. Acceleration of system,

$$
\begin{aligned}
& a=\frac{m g \sin 60^{\circ}-m g \sin 30^{\circ}}{2 m} \\
& \text { or } \quad a=\left(\frac{\sqrt{3}-1}{4}\right) g
\end{aligned}
$$

Now, $\vec{a}_{\text {common }}=\frac{m \overrightarrow{a_{1}}+m \overrightarrow{a_{2}}}{2 m}$
Here, $\overrightarrow{a_{1}}$ and $\overrightarrow{a_{2}}$ are $\left(\frac{\sqrt{3}-1}{4}\right) g$ at right angles.

Hence, $\left|\overrightarrow{a_{\mathrm{common}}}\right|=\frac{\sqrt{2}}{2} a=\frac{a}{\sqrt{2}}=\left(\frac{\sqrt{3}-1}{4 \sqrt{2}}\right) g$.
41.

Unless $m_{1}=m_{3}$, the centre of mass of all the four particles can never be at the centre of the square.
42.

The rope tension is the same both on the left and right hand side at every instant and consequently momentum of both sides are equal.
$\therefore M v=(M-m)(-v)+m\left(v_{r}-v\right)$
or $\quad v=\frac{m}{2 M} v_{r}$
Momentum of the centre of mass is,

$$
\begin{aligned}
& & P & =P_{1}+P_{2} \\
& \text { or } & 2 M v_{\mathrm{com}} & =M v+M v \\
& \therefore & v_{\mathrm{com}} & =v=\frac{m}{2 M} v_{r} .
\end{aligned}
$$

43.

$$
\begin{aligned}
\vec{v}_{\mathrm{com}} & =\frac{m_{1} \overrightarrow{v_{1}}+m_{2} \overrightarrow{v_{2}}}{m_{1}+m_{2}} \\
\frac{\overrightarrow{v_{1}}+\overrightarrow{v_{2}}}{2} & =(\hat{i}+\hat{j}) \mathrm{m} / \mathrm{s}
\end{aligned}
$$

Similarly, $\vec{a}_{\mathrm{com}}=\frac{\overrightarrow{a_{1}}+\vec{a}_{2}}{2}=\frac{3}{2}(\hat{i}+\hat{j}) \mathrm{m} / \mathrm{s}^{2}$
Since, $\vec{v}_{\text {com }}$ is parallel to $\vec{a}_{\text {com }}$ the path will be a straight line.
44. If mass is non-uniformly distributed, then centre of mass of ring may lie from origin to circumference. Hence, $0 \leq b \leq a$.
45. Velocity of man with respect to ground is $1 \mathrm{~m} / \mathrm{s}$ in opposite direction.
Hence, $\quad v_{\text {com }}=\frac{m_{1} v_{1}+m_{2} v_{2}}{m_{1}+m_{2}}=\frac{40 \times 2-80 \times 1}{40+80}=0$.

[CHEMISTRY]

$\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{CH}$ has 10σ-bonds are 3π-bonds

34 electrons
47.
48.
49.
50. $\quad \mathrm{BF}_{3}$ and NO_{2}^{-}- have sp^{2}-hybridised central atom while NH_{2}^{-}and $\mathrm{H}_{2} \mathrm{O}$ have sp^{3} hybridised central atom.

AVIRAL CLASSES

creating scholars
51.

52. $\quad \mathrm{SF}_{4}$ and I_{3}^{-}and PCl_{5} are $\mathrm{sp}^{3} \mathrm{~d}$-hybridised. In general $\mathrm{PCl}_{5}(\mathrm{~g})$ in considered $\mathrm{sp}^{3} \mathrm{~d}$. In solid state, PCl_{5} exists as $\left(\mathrm{PCl}_{4}\right) \oplus\left(\mathrm{PCl}_{6}\right)^{\ominus}$ with sp^{3} and $\mathrm{sp}^{3} \mathrm{~d}^{2}$-hybridisations respectively.
SbCl_{5}^{2-} has 5σ bonds and one lone pair. It is $\mathrm{sp}^{3} \mathrm{~d}^{2}$-hybridised.
53. Four atoms directly related with $\mathrm{C} \equiv \mathrm{C}$ are linearly arrnaged
54. XeF has 8 electrons in valence shell. In $\mathrm{XeF}_{2}, \mathrm{XeF}_{4}$ and XeF_{6}, two sigma bonds, four sigma bonds and six sigma bonds are respectively formed. Hence, in $\mathrm{XeF}_{2} 3$ pairs of electrons are left, in $\mathrm{XeF}_{4} 2$ pairs of electron are left and in XeF_{6} only 1 pair of electron is left.
55. In BH_{3}, B-atom forms 3σ-bonds has sp^{2}-hybridization. In $\mathrm{B}_{2} \mathrm{H}_{6}$, each B -atom is joined with 4 H atoms and is sp^{3}-hybridization
56.

57. Each $f \mathrm{C}^{1}$ and C^{2} are forming two sigma bonds. Hence, both are sp-hybridised.
58.
59.
60. In SF_{4}, sulphur atom is $\mathrm{sp}^{3} \mathrm{~d}$ hybridized with two axial and two equitorial F -atoms and one lone pair on equitorial position.
The axial S-F bonds are larger than equitorial $\mathrm{S}-\mathrm{F}$ bonds.
61. In methane C -atom is sp^{3}-hybridized with 25 s -character. In ethene, it is sp^{2} with 33 s -character has to be less than 25 (actual value is 21.43)
 12σ and 3π bonds. Ratio $\sigma: \pi$ bonds $=4: 1$

Highest product of charges of ions.

> in valence shell.

Nitrogen ($1 s^{2} 2 s^{2} 2 p^{3}$) has no d-subshell in valence shell for expansion of electronic configuration.
65. Cu^{2+} and SO_{4}^{2-} have coulombic forces of attraction giving rise to ionic bond. Four $\mathrm{H}_{2} \mathrm{O}$ molecules form coordinate bonds with Cu^{2+}. One $\mathrm{H}_{2} \mathrm{O}$ molecule joins two $\mathrm{H}_{2} \mathrm{O}$ related to Cu^{2+} and also $\mathrm{SO}_{4}{ }^{2-}$ by H -bonds. $\mathrm{H}_{2} \mathrm{O}$ itself has covalent bonds.
66. $\quad \mathrm{Ca}-\frac{\mathrm{C}}{\mathrm{C}} \mathrm{C}| | \pi$, one sigma and two pi bonds
67. $\quad \mathrm{x}$ is related to sp^{3}-hybridized C -atom, y is related to sp^{2}-hybridized C -atom and z is related to sp -hybridised C-atom.
68.
69. In $\mathrm{B}_{2} \mathrm{H}_{6}$, each BH_{3} unit has 6 electrons on B-atom
70. A covalent bond is formed by the partial overlap of electron clouds of half filled orbitals.
71.
72. C
73. $\quad \mathrm{O}_{2}^{-}$has one unpaired electron $\left(\pi_{2 \mathrm{pp}_{\mathrm{y}}}^{*}\right)^{1}$.
74. L.E. is directly proportional to charge and inversely proportional to size.

